Entropy-based Prediction of Network Protocols in the Forensic Analysis of DNS Tunnels
نویسندگان
چکیده
DNS tunneling techniques are often used for malicious purposes but network security mechanisms have struggled to detect these. Network forensic analysis has thus been used but has proved slow and effort intensive as Network Forensics Analysis Tools struggle to deal with undocumented or new network tunneling techniques. In this paper we present a method to aid forensic analysis through automating the inference of protocols tunneled within DNS tunneling techniques. We analyze the internal packet structure of DNS tunneling techniques and characterize the information entropy of different network protocols and their DNS tunneled equivalents. From this, we present our protocol prediction method that uses entropy distribution averaging. Finally we apply our method on a dataset to measure its performance and show that it has a prediction accuracy of 75%. Our method also preserves privacy as it does not parse the actual tunneled content, rather it only calculates the information entropy. Keywords-Network Forensics; DNS Tunneling; Malware Communication; Entropy; Traffic Classification;
منابع مشابه
Detecting Active Bot Networks Based on DNS Traffic Analysis
Abstract—One of the serious threats to cyberspace is the Bot networks or Botnets. Bots are malicious software that acts as a network and allows hackers to remotely manage and control infected computer victims. Given the fact that DNS is one of the most common protocols in the network and is essential for the proper functioning of the network, it is very useful for monitoring, detecting and redu...
متن کاملReverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages
Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...
متن کاملPrediction of structural forces of segmental tunnel lining using FEM based artificial neural network
To judge about the performance of designed support system for tunnels, structural forces i.e. peak values of axial and shear forces and moments are critical parameters. So in this study, at first a complete database using finite element method was prepared. Then, a model of artificial neural network (ANN) using multi-layer perceptron was developed to estimate lining structural forces. Sensitivi...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملAn Fpga-based System for Detecting Malicious Dns Network Traffic
Billions of packets traverse computer networks every day. Often, these packets have legitimate destinations such as buying a book at amazon.com or streaming a video. Unfortunately, malicious and suspicious network traffic continues to plague the Internet. One example is abusing the Domain Name System (DNS) protocol to exfiltrate sensitive data, establish backdoor tunnels, or control botnets. To...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.06363 شماره
صفحات -
تاریخ انتشار 2016